Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
نویسندگان
چکیده
منابع مشابه
Macroporous nanowire nanoelectronic scaffolds for synthetic tissues.
The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both el...
متن کاملSynthetic nanoelectronic probes for biological cells and tissues.
Research at the interface between nanoscience and biology could yield breakthroughs in fundamental science and lead to revolutionary technologies. In this review, we focus on the interfaces between nanoelectronics and biology. First, we discuss nanoscale field effect transistors (nanoFETs) as probes to study cellular systems; specifically, we describe the development of nanoFETs that are compar...
متن کاملMultifunctional three-dimensional macroporous nanoelectronic networks for smart materials.
Seamless and minimally invasive integration of 3D electronic circuitry within host materials could enable the development of materials systems that are self-monitoring and allow for communication with external environments. Here, we report a general strategy for preparing ordered 3D interconnected and addressable macroporous nanoelectronic networks from ordered 2D nanowire nanoelectronic precur...
متن کاملThree-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.
Direct electrical recording and stimulation of neural activity using micro-fabricated silicon and metal micro-wire probes have contributed extensively to basic neuroscience and therapeutic applications; however, the dimensional and mechanical mismatch of these probes with the brain tissue limits their stability in chronic implants and decreases the neuron-device contact. Here, we demonstrate th...
متن کاملNanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.
Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Materials
سال: 2012
ISSN: 1476-1122,1476-4660
DOI: 10.1038/nmat3404